Части самолета: конструктивное значение и особенности эксплуатации. Строение крыла Как устроено крыло птицы

Части самолета: конструктивное значение и особенности эксплуатации. Строение крыла Как устроено крыло птицы
Части самолета: конструктивное значение и особенности эксплуатации. Строение крыла Как устроено крыло птицы

К сожалению, я ненашел ни одной статьи по аэродинамики "для моделиста". Ни на форумах, ни в дневниках, ни в блогах- ни где нет нужной "выжимки" по этой теме. А вопросов возникает море, особенно у новичков, да и те, кто считает себя "уже не новичком", зачастую не утруждают себя изучением теории. Но мы это исправим!)))

Сразу скажу, сильно углубляться в эту тему не буду, иначе это получится, как минимум научный труд, с кучкой непонятных формул! И тем более я не стану пугать вас такими терминами, как "число Рейнольдса"- кому будет интересно- можете почитать на досуге.

Итак, договорились- только самое нужное для нас- моделистов.)))

Силы, действующие на самолет в полете.

В полете самолет подвергается влиянию многих сил, обусловленных наличием воздуха, но все их можно представить в виде четырех главных сил: силы тяжести, подъемной силы, силы тяги винта и силы сопротивления воздуха (лобовое сопротивление). Сила тяжести остается всегда постоянной, если не считать уменьшения ее по мере расхода горючего. Подъемная сила противодействует весу самолета и может быть больше или меньше веса, в зависимости от количества энергии, затрачиваемой на движение вперед. Силе тяги винта противодействует сила сопротивления воздуха (иначе лобовое сопротивление).

При прямолинейном и горизонтальном полете эти силы взаимно уравновешиваются: сила тяги винта равна силе сопротивления воздуха, подъемная сила равна весу самолета. Ни при каком ином соотношении этих четырех основных сил прямолинейный и горизонтальный полет невозможен.

Любое изменение любой из этих сил повлияет на характер полета самолета. Если бы подъемная сила, создаваемая крыльями, увеличилась по сравнению с силой тяжести, результатом оказался бы подъем самолета вверх. Наоборот, уменьшение подъемной силы против силы тяжести вызвало бы снижение самолета, т. е. потерю высоты.

Если равновесие сил не будет соблюдаться, то самолет будет искривлять траекторию полета в сторону преобладающей силы.

Про крыло.

Размах крыла - расстояние между плоскостями, параллельными плоскости симметрии крыла, и касающимися его крайних точек. Р. к. это важная геометрическая характеристика летательного аппарата, оказывающяя влияние на его аэродинамические и лётно-технические характеристики, а также является одним из основных габаритных размеров летательного аппарата.

Удлинение крыла - отношение размаха крыла к его средней аэродинамической хорде. Для непрямоугольного крыла удлинение = (квадрат размаха)/площадь. Это можно понять, если за основу возьмём прямоугольное крыло, формула будет проще: удлинение = размах/хорду. Т.е. если крылоимеет размах 10 метров а хорда = 1 метр, то удлинение будет = 10.

Чем больше удлинение- тем меньше индуктивное сопротивление крыла, связанное с перетеканием воздуха с нижней поверхности крыла на верхнюю через законцовку с образованием концевых вихрей. В первом приближении можно считать, что характерный размер такого вихря равен хорде- и с ростом размаха вихрь становится всё меньше и меньше по сравнению с размахом крыла. Естественно, чем меньше индуктивное сопротивление- тем меньше и общее сопротивление системы, тем выше аэродинамическое качество. Естественно, у конструкторов возникает соблазн сделать удлинение как можно больше. И тут начинаются проблемы: наряду с применением высоких удлинений конструкторам приходится увеличивать прочность и жёсткость крыла, что влечет за собой непропорциональное увеличение массы крыла.

С точки зрения аэродинамики наиболее выгодным будет такое крыло, которое обладает способностью создавать возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Для оценки аэродинамического совершенства крыла вводится понятие аэродинамического качества крыла.

Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла.

Наилучшей в аэродинамическом отношении является эллипсовидная форма, но такое крыло сложно в производстве, поэтому редко применяется. Прямоугольное крыло менее выгодно с точки зрения аэродинамики, но значительно проще в изготовлении. Трапециевидное крыло по аэродинамическим характеристикам лучше прямоугольного, но несколько сложнее в изготовлении.

Стреловидные и треугольные в плане крылья в аэродинамическом отношении на дозвуковых скоростях уступают трапециевидным и прямоугольным, но на околозвуковых и сверхзвуковых имеют значительные преимущества. Поэтому такие крылья применяются на самолетах, летающих на околозвуковых и сверхзвуковых скоростях.

Крыло эллиптической формы в плане обладает самым высоким аэродинамическим качеством- минимально возможным сопротивлением при максимальной подъемной силе. К сожалению, крыло такой формы применяется не часто из-за сложности конструкции, низкой технологичности и плохих срывных характеристик. Однако сопротивление на больших углах атаки крыльев другой формы в плане всегда оценивается по отношению к эллиптическому крылу. Наилучший пример применения крыла такого вида- английский истребитель "Спитфайер".

Крыло прямоугольной формы в плане имеет самое высокое сопротивление на больших углах атаки. Однако такое крыло, как правило, имеет простую конструкцию, технологично и имеет очень неплохие срывные характеристики.

Крыло трапецеидальной формы в плане по величине воздушного сопротивления приближается к эллиптическому. Широко применялось в конструкциях серийных самолетов. Технологичность ниже, чем у прямоугольного крыла. Получение приемлемых срывных характеристик также требует некоторых конструкторских ухищрений. Однако крыло трапецеидальной формы и правильной конструкции обеспечивает минимальную массу крыла при прочих равных условиях. Истребители Bf-109 ранних серий имели трапецевидное крыло с прямыми законцовками:

Крыло комбинированной формы в плане. Как правило, форма такого крыла в плане образуется несколькими трапециями. Эффективное проектирование такого крыла предполагает проведение многочисленных продувок, выигрыш в характеристиках составляет несколько процентов по сравнению с трапецеидальным крылом.

Стреловидность крыла — угол отклонения крыла от нормали к оси симметрии самолёта, в проекции на базовую плоскость самолета. При этом положительным считается направление к хвосту.Существует стреловидность по передней кромке крыла, по задней кромке и по линии четверти хорд.

Крыло обратной стреловидности (КОС) — крыло с отрицательной стреловидностью.

Преимущества:

Улучшается управляемость на малых полётных скоростях.
-Повышает аэродинамическую эффективность во всех областях лётных режимов.
-Компоновка с крылом обратной стреловидности оптимизирует распределения давления на крыло и переднее горизонтальное оперение

Недостатки:
-КОС особо подвержено аэродинамической дивергенции (потере статической устойчивости) при достижении определённых значений скорости и углов атаки.
-Требует конструкционных материалов и технологий, обеспечивающих достаточную жёсткость конструкции.

Су-47 "Беркут" с обратной стреловидностью:

Чехословацкий планер LET L-13 с обратной стреловидностью крыла:

— отношение веса летательного аппарата к площади несущей поверхности. Выражается в кг/м² (для моделей- гр/дм²).Величина нагрузки на крыло определяет взлетно-посадочную скорость летательного аппарата, его маневренность, и срывные характеристики.

По-простому, чем меньше нагрузка, тем меньшая скорость требуется для полета, следовательно тем меньше требуется мощности двигателя.

Средней аэродинамической хордой крыла (САХ) называется хорда такого прямоугольного крыла, которое имеет одинаковые с данным крылом площадь, величину полной аэродинамической силы и положение центра давления (ЦД) при равных углах атаки. Или проще- Хорда — отрезок прямой, соединяющей две наиболее удаленные друг от друга точки профиля.

Величина и координаты САХ для каждого самолета определяются в процессе проектирования и указываются в техническом описании.

Если величина и положение САХ данного самолета неизвестны, то их можно определить.

Для крыла, прямоугольного в плане, САХ равна хорде крыла.

Для трапециевидного крыла САХ определяется путем геометрического построения. Для этого крыло самолета вычерчивается в плане (и в определенном масштабе). На продолжении корневой хорды откладывается отрезок, равный по величине концевой хорде, а на продолжении концевой хорды (вперед) откладывается отрезок, равный корневой хорде. Концы отрезков соединяют прямой линией. Затем проводят среднюю линию крыла, соединяя прямой середины корневой и концевой хорд. Через точку пересечения этих двух линий и пройдет средняя аэродинамическая хорда (САХ).


Форма крыла в поперечном сечении называется профилем крыла . Профиль крыла оказывает сильнейшее влияние на все аэродинамические характеристики крыла на всех режимах полёта. Соответственно, подбор профиля крыла - важная и ответственная задача. Впрочем, в наше время подбором профиля крыла из существующих занимаются только самодельщики.

Профиль крыла - это одна из основных составляющих, формирующих летательный аппарат и самолет в частности, так как крыло все же его неотъемлемая часть. Совокупность некоторого количества профилей составляют целое крыло, причем по всему размаху крыла они могут быть разные. А от того, какие они будут, зависит назначение самолета и то, как он будет летать. Типов профилей достаточно много, но форма их принципиально всегда каплевидна. Этакая сильно вытянутая горизонтальная капля. Однако капля эта обычно далека от совершенства, потому что кривизна верхней и нижней поверхностей у разных типов разная, как впрочем и толщина самого профиля. Классика - это когда низ близок к плоскости, а верх выпуклый по определенному закону. Это так называемый несимметричный профиль, но есть и симметричные, когда верх и низ имеют одинаковую кривизну.

Разработка аэродинамических профилей проводилась практически с начала истории авиации, проводится она и сейчас.Делается это в специализированных учреждениях. Ярчайшим представителем такого рода учреждений в России является ЦАГИ - Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского. А в США - такие функции выполняет Исследовательский центр в Лэнгли (подразделение NASA).

THE END?

Продолжение следует.....

Способная не просто к парению в воздухе, а к настоящему полету. Их строение хорошо приспособлено для этой цели. Будучи хозяевами воздуха, они прекрасно чувствуют себя и на земле, и на воде, а некоторые из них, утки например, - во всех трех средах. В этом играет свою роль не только скелет птицы, но и перья. Главным событием, обеспечившим этим существам процветание, было развитие у них оперения. Поэтому мы рассмотрим не только скелет птицы, но кратко расскажем и о нем.

Подобно шерсти у млекопитающих, перья возникли сначала как теплоизолирующий покров. Только несколько позже они преобразовались в несущие плоскости. Птицы оделись в перья, по-видимому, за миллионы лет до того, как обрели способность летать.

Эволюционные изменения в строении птиц

Приспособление к полету привело к перестройке всех систем органов и поведения. Изменился и скелет птицы. Фото, представленное выше, - изображение внутреннего строения голубя. Структурные изменения проявились в основном в увеличении силы мышц при снижении веса тела. Кости скелета стали полыми или ячеистыми либо преобразовались в тонкие изогнутые пластинки, сохранив достаточную прочность для выполнения предназначенных им функций. На смену тяжелым зубам пришел легкий клюв, перьевой же покров - образец легкости, хотя он и может весить больше, чем скелет. Между внутренними органами расположены участвующие в дыхании воздушные мешки.

Особенности скелета голубя

Предлагаем подробно рассмотреть скелет голубя. Он состоит из тазовых костей, костей крыла, хвостовых позвонков, туловища, шейного отдела и черепной коробки. В черепе выделяют затылок, темя, лоб, клюв и очень большие глазницы. Клюв делится на 2 части - верхнюю и нижнюю. Они двигаются отдельно друг от друга. Шейный отдел включает в себя основание шеи, глотку и шею. Скелет голубя в спинной части состоит из крестцовых, поясничных и грудных позвонков. Грудь - из грудины, а также 7-ми пар ребер, крепящихся к грудным позвонкам. Хвостовые позвонки сплющены и прикреплены дисками, состоящими из соединительной ткани. Таков, в общих чертах, скелет птицы. Схема его была представлена выше.

Преобразование костного скелета

Преобразование костного скелета, связанное с хождением птиц на задних конечностях и использованием передних для полета, особенно наглядно выражено в плечевом и тазовом поясах. Плечевой пояс жестко связан с грудиной, и потому при полете тело как бы висит на крыльях. Достигается это благодаря сильно разросшимся коракоидным костям, которые у млекопитающих отсутствуют.

Скелет птицы имеет заметно усиленный тазовый пояс. Задние конечности хорошо удерживают этих животных на земле (на ветвях при лазании или на воде при плавании) и, что особенно важно, успешно гасят удары в момент приземления. Поскольку кости стали тонкими, их прочность повысилась в результате срастания друг с другом, когда менялось строение скелета птицы. Как и у млекопитающих, три парные тазовые кости слились с позвоночником и между собой. Произошло слияние туловищных позвонков, начиная от последнего грудного и кончая первым хвостовым. Все они вошли в состав сложного крестца, который укрепил тазовый пояс, позволив конечностям птиц осуществлять свои функции, не нарушая работы других систем.

Конечности птиц

Следует рассмотреть и конечности, характеризуя строение скелета птицы. Они сильно видоизменены по сравнению с типичными особенностями, характерными для позвоночных. Так, кости плюсны и предплюсны удлинились и слились между собой, образовав дополнительный сегмент конечности. Бедро обычно скрыто под перьями. У задних конечностей появился механизм, позволяющий птицам удерживаться на ветвях. Мышцы-сгибатели пальцев лежат выше колена. Их длинные сухожилия проходят по передней стороне колена, затем по задней стороне цевки и нижней поверхности пальцев. При сгибании пальцев, когда птица обхватывает ветку, сухожильный механизм запирает их, так что захват не слабеет даже во время сна. По своему строению задняя конечность птицы весьма похожа на ногу человека, однако многие кости голени и стопы у нее срослись.

Кисть

Характеризуя особенности скелета птиц, отметим, что особенно резкие изменения в связи с приспособлением к полету произошли в строении кисти. Оставшиеся кости передних конечностей срослись, образуя опору для первостепенных маховых перьев. Сохранившийся первый палец является опорой для рудиментарного крылышка, которое действует как особый регулятор, снижающий торможение крыла при малых скоростях полета. Второстепенные маховые перья прикрепляются к локтевой кости. Совместно с замечательным устройством самих перьев все это создает крыло - орган, отличающийся высокой эффективностью и адаптивной пластичностью. Ниже представлен скелет вымершей в 17 веке

Крылья

Подъемную силу и управление при полете обеспечивают маховые и рулевые перья, но их аэродинамические свойства еще не поняты до конца. При нормальном машущем полете крылья движутся вниз и вперед, а затем - резко вверх и назад. При ударе вниз крыло имеет такой крутой угол атаки, что оно гасило бы скорость, если бы первостепенные маховые перья не действовали в это время как самостоятельная несущая плоскость, препятствующая торможению. Каждое перо поворачивается вверх и вниз вдоль стержня, так что создается направленная вперед результирующая тяга, чему способствует и раздвигание их концов. Кроме того, при определенном угле атаки крылышко отводится вперед от фронта крыла. Так образуется разрез, снижающий турбулентность над несущей плоскостью и тем самым гасящий торможение. Приземляясь, птица предварительно гасит скорость, располагая тело в вертикальной плоскости, отводя назад хвост и тормозя крыльями.

Особенности строения крыльев различных птиц

Птицы, умеющие летать медленно, обладают особенно хорошо заметными щелями между первостепенными маховыми. Например, у беркута (Aquilachysaetos, на фото выше) промежутки между перьями составляют до 40% общей площади крыла. У грифов очень широкий хвост создает дополнительную подъемную силу при парении. Другую крайность по сравнению с крыльями орлов и грифов образуют длинные и узкие крылья морских птиц.

Например, альбатросы (фото одного из них представлено выше) почти не машут крыльями, паря на ветру и то пикируя, то круто взмывая вверх. Их способ полета столь специализирован, что в штилевую погоду они буквально прикованы к земле. Крылья колибри несут лишь первостепенные маховые перья и способны совершать более 50 взмахов в секунду, когда птица повисает в воздухе; при этом они движутся вперед и назад в горизонтальной плоскости.

Перьевой покров

Перьевой покров приспособлен к выполнению разнообразных функций. Так, жесткие маховые и рулевые перья образуют крылья и хвост. А кроющие и контурные придают телу птицы обтекаемую форму, а пух является термоизолятором. Налегая друг на друга, словно черепица, перья создают непрерывный гладкий покров. Тонкое строение пера в большей степени, чем какие-либо другие анатомические особенности, обеспечивает птицам процветание в воздушной среде. Опахало каждого из них состоит из сотен бородок, располагающихся в одной плоскости по обе стороны от стержня, а от них также в обе стороны отходят бородочки, несущие крючочки со стороны, удаленной от тела птицы. Эти крючочки цепляются за гладкие бородочки предыдущего ряда бородок, что позволяет сохранять форму опахала неизменной. На каждом маховом пере крупной птицы насчитывается до 1,5 млн. бородочек.

Клюв и его значение

Клюв служит птицам манипулирующим органом. На примере вальдшнепа (Scolopaxrusticola, один из них представлен на фото выше) можно увидеть, сколь сложными могут быть действия клюва, когда птица погружает его в почву, охотясь за червем. Наткнувшись на добычу, птица сокращением соответствующих мышц сдвигает вперед квадратные кости, входящие в состав челюстной дуги. Те в свою очередь толкают вперед которые вызывают отгибание вверх кончика надклювья, находится овальное отверстие, через которое проходит сухожилие подключичной мышцы, прикрепляющееся к верхней стороне плеча. Таким образом, при сокращении крыло поднимается, а при сокращении грудных - опускается.

Итак, мы изложили основные особенности строения скелета птиц. Надеемся, вы открыли для себя что-то новое об этих удивительных существах.

Из многочисленных средств передвижения именно самолет является самым быстрым, удобным и безопасным. Каждый современный человек видел авиалайнер, но не все понимают, как именно работает механизм. В этой статье мы подробно рассмотрим строение крыла самолета.

Конструкция авиалайнера состоит из следующих основных элементов:

  • крыла;
  • оперения хвостовой части;
  • устройства для взлета и посадки;
  • фюзеляжа;
  • двигателей.

Поскольку в рамках одной статьи невозможно детально рассмотреть каждый элемент конструкции, далее мы сфокусируем внимание исключительно на крыльях.

Одним из основных «органов» воздушного транспорта являются крылья, без которых самолет даже не сможет оторваться от земли. Конструкция крыла самолета состоит из правой и левой консоли, основное предназначение данного узла – создать необходимую подъемную силу для авиалайнера .

Здесь расположена механизация для взлета и посадки, которая в несколько раз улучшает следующие характеристики:

  • разгон авиалайнера;
  • скорость разбега;
  • скорость взлета и посадки.

Также тут располагаются топливные баки, а на военных машинах предусмотрены место для перевозки военного снаряжения.

От чего зависят летные качества авиатранспорта?

Размах и форма крыла самолета влияют на летные качества. Размах крыла самолета определяется длиной между прямым крылом и концевой точкой данного элемента.

Профиль крыла самолета – это сечение по плоскости, которое замеряется перпендикулярно размаху. В зависимости от предназначения авиалайнера его профиль крыла может меняться, и именно этот момент является основным, ведь с его помощью формируется сам летательный аппарат. То есть профиль крыла самолета влияет на назначение авиатранспорта и скорость его передвижения. Например:

  • профиль с острой передней кромкой предназначается для скоростных авиалайнеров МИГ-25;
  • высотный самолет МИГ-31 обладает аналогичным профилем;
  • более толстый профиль с передней закругленной кромкой предназначается для авиатранспорта, предназначенного для транспортировки пассажиров.

Существует несколько вариантов профилей, однако их форма исполнения всегда одинаковая. Данный элемент представляется в виде капли различной толщины.

Создавая профиль для любого летательного аппарата, производители сперва проводят точные расчеты, основанные на аэродинамике. Подготовленный образец проверяется в специальной аэродинамической трубе, и если технические характеристики подойдут для полетных условий, профиль устанавливается на летательный аппарат. Разработкой аэродинамических профилей занимались ученые с начала развития авиации, процесс разработки не прекращается и в настоящее время.

Крыло самолета «Москито»

Принцип работы

При помощи крыла летательный аппарат удерживается в небе. Многие ошибочно считают, что авиатранспорт обладает двумя крыльями , на самом деле у него имеется всего один элемент , и две плоскости, которые расположены на правой и левой сторонах.

То, как работает крыло самолета, доступно объяснили журналисты телеканала «Россия 2». Рекомендуем ознакомиться с коротким и познавательным видео, на котором принцип работы крыла самолета изложен доступным языком.

Согласно закону Бернулли , чем выше поток частиц или жидкости, тем меньше будет наблюдаться внутреннее давление воздушного потока. Именно по этому закону создается профиль крыла, то есть поток частиц или жидкости, соприкасаясь с поверхностью профилей, равномерно распределятся по всем частям элемента.

В хвостовой зоне частицы также не должны соединяться, чтобы не образовался вакуум, поэтому верхняя часть элемента обладает большей кривизной. Именно такое строение позволяет создать меньшее давление на верхней части элемента, что и требуется для создания подъемной силы .

Сила подъема крыла может завесить и от «угловой атаки». Для ее замера используется длина хорды крыла и скорость встречного потока воздушных масс. Чем больше будет показатель «угловой атаки», тем будет больше сила подъема крыла. Поток воздушных масс может быть как ламинарным, так и турбулентным:

  1. Гладкий поток без вихрей называется ламинарным , с его помощью создается подъемная сила.
  2. При турбулентном потоке, который создается при помощи вихрей, равномерно распределить давление не получится, соответственно, и подъемную силу создать не удастся.

Чтобы воздушный транспорт имел нужный скоростной диапазон, мог осуществлять безопасную посадку и взлет, максимально разгонялся, существует специальный механизм управления крыла, в который входят следующие элементы:

  • закрылки и предкрылки;
  • интерцепторы;
  • щитки для посадки.

Закрылки устанавливаются в задней части, являются основными компонентами в механизме управления самолета. Они уменьшают скорость, предоставляют авиатранспорту необходимую силу для подъема в воздух. Предкрылки не допускают возникновения слишком большой «угловой атаки», элементы расположены в носовой части. Интерцепторы расположены вверху крыла, помогают снизить подъемную силу когда это необходимо.

Законцовка

Данная часть крыла самолета помогает увеличить размах крыла, в несколько раз снижает сопротивление, которое образуется воздушным потоком, а также увеличивает подъемную силу. Кроме этого, законцовка крыла самолета помогает увеличить длину, практически не изменив при этом его размах. При использовании законцовки расход топлива у самолетов сокращается в несколько раз, а у планеров увеличивается дальность пути. Чаще всего используются гребневые законцовки, который помогают экономнее использовать топливо, легче набирать высоту, уменьшить длину разбега перед взлетом.

Кроме этого, элемент крыла самолета гребневого типа в несколько раз уменьшает индукционное сопротивление. Сегодня они чаще всего применяются на Боингах-767, -777, -747-8, а в ближайшее время планируется установка на Боингах-787.

Вконтакте

Анатомическое строение скелета птицы обусловлено эволюционными изменениями, которые оно претерпело в течение миллионов лет. Предки птиц, рептилии и ящеры, не умели летать. В освоении воздушного пространства им помогла перестройка строения костей, а также смена чешуи на оперение. Птичий скелет уникален, поскольку ему нет аналогов в животном мире. Из этой статьи вы узнаете все о его структуре, особенностях и свойствах.

Эволюционные преобразования

Когда предки современных птиц устремились в небо, их структура тела и скелета постепенно подстроилась под новый образ жизни. В частности, мышцы увеличились, а масса тела снизилась. Кости внутри они стали полыми или ячеистыми, что придало им легкости. Изогнутые пластины костной ткани увеличили прочность.

Скелет пернатых состоит из следующих элементов:

  • черепа и клюва;
  • позвоночника;
  • ребер, киля и грудины;
  • костей пояса передних конечностей;
  • костей передних конечностей;
  • костей пояса задних конечностей;
  • костей задних конечностей.

В отличие от древних рептилий и ящеров, зубы у птиц отсутствуют за ненадобностью. На смену им пришел клюв. А вместо чешуи на поверхности кожи появились перья, о которых можно прочесть в статье «Виды и строение перьев птицы».

Между внутренними органами птиц находятся воздушные мешочки. Они отвечают за работу дыхательной системы, создавая комфорт во время полета.

Структура птичьего черепа

Костная ткань черепа имеет монолитную структуру. Сросшиеся кости делают его прочным, что крайне важно, поскольку птица часто работает клювом: добывает пищу из коры деревьев, разбивает орехи. Череп и первый позвонок шеи тоже срослись.

Птицы имеют большие глазницы. Размер настолько внушителен, что глазная зона потеснила мозговую коробку.

Клюв состоит из надклювья (верху) и подклювья (внизу). Его структура – это роговое вещество. Надклювье подвижно, поскольку прикреплено к мозговой коробке по принципу шарнира.

Слуховые отверстия располагаются под глазницами в нижнем краю.

О структуре костей грудной клетки

Позвонки в зоне груди и ребер защищают сердечную мышцу и птичьи легкие. У быстро летающих пернатых имеется грудина больших размеров, которая вследствие эволюционных преобразований разрослась в киль. К ней крепятся основные летательные мышцы. Птицы, относящиеся к нелетающим, киля не имеют.

Плечевой пояс объединяет три косточки, образующие своеобразный треножник. Одна из трех ножек называется «воронья кость» — она упирается непосредственно в грудину. Другая, лопатка, располагается в области ребер. А третья срослась с ключицей, что образовало присущую для всех птиц «вилочку».

Лопатка с вороньей костью на месте скрепления образуют впадину. В этой области осуществляется поворот головки плечевой кости.

О строении крыльев

В строении крыльев птицы есть что-то общее со структурой рук человека. Речь идет о плечевой кости, а точнее об ее верхней части в области конечностей. В локтевом суставе она срослась с костями предплечья.

Вообще, большинство элементов кисти пернатых срослись между собой. Некоторые из них утратились вследствие эволюционных процессов. В этом и состоит главное анатомическое отличие крыльев и человеческих рук. А также в том, что птичье запястье состоит всего из двух основных костей и четырех фаланговых — пальцев.

https://youtu.be/n-3BJUqAx6A

Вес крыла пернатых намного меньше, чем масса конечностей других позвоночных с аналогичными габаритами. Причины тому – меньшее число элементов, отсутствие мышечной ткани и полая структура костей.

Роль мышц играют сухожилия и хорошо развитые мускулы грудины.

Внутри плечевой косточки крыла у пернатых находится воздушный мешочек.

В структуре тела птиц присутствуют 175 скелетных поперечных мышц. Их система парная, большинство из них расположено симметрично справа и слева. Контроль за мышцами сознательный, поэтому их сокращение произвольное.

Грудная и надкоракидная мышцы – это основные элементы мышечной системы пернатых. Первая больше второй, обе начинаются в зоне грудины. У кур, индеек и других одомашненных птиц такие мышцы именуются «белым мясом». Остальные относят к «черному».

Функция грудной мышцы: обеспечение движения птицы прямо и вверх за счет подтягивания крыла вниз. Что касается надкоракоидной мышцы, эта часть системы выполняет обратную функцию — оттягивает крыло вверх в противоположном направлении относительно грудной мышцы.

Гладкая мускулатура состоит из мышечных групп, расположенных в области мочеполовой, сосудистой, дыхательной и пищеварительной системах. Находятся они и в глазной зоне, обеспечивая птице фокусировку. Они функционируют непроизвольно, то есть без сознательного контроля.

Строение лап

Ноги в пернатом мире есть только у страуса. Конечности остальных птичек именуются лапами, так как они выполняют дополнительные функции: хватательную, держательную и другие.

Все птицы имеют по две лапы. Их строение характеризуется наличием бедренной кости, голени, коленного сустава и пальцев.

Малая и большая берцовые косточки у пернатых срослись, образовав тибиотарзус. После сращивания от малой берцовой косточки остался лишь небольшой выступающий рудимент, прилегающий к тибиотарзусу.

Стопы птиц

Стопа пернатых находится в голеностопном суставе. Она состоит из одной косточки, пальцев. А также цевки, которая образовалась от срастания элементов плюсны и нижних предплюсневых костей.

Птичьи стопы выглядят по-разному. Такое многообразие обусловлено различными условиями и образом жизни птиц. Важно и то, какой пище они отдают предпочтение.

У хищных охотников сильные когтистые лапы, служащие им орудием, с помощью которого они разрывают своих жертв. Пернатые, живущие на ветвях, имеют изящные лапки с длинными когтями и гибкими пальцами. Водоплавающих птиц природа наградила лапами с перепонками, помогающими хорошо держаться на воде.

Большинство пернатых имеют по четыре пальца, три из которых направлены вперед, а четвертый располагается сзади. Они ступают по земле исключительно пальцами и опираются пяткой. Цевка в процессе ходьбы не участвует.

Оставляйте свои комментарии к этой статье. Если она вам понравилась, делитесь информацией с друзьями в социальных сетях.

В общем случае крыло самолёта состоит из центропланной части, консолей (левой и правой) и механизации крыла . Также крыло можно разделить на две части, левое и правое полукрыло. Часто встречается термин «крылья», но он ошибочен по отношению к моноплану .

Принцип действия

Дым показывает движение воздуха, обусловленное взаимодействием крыла с воздухом.

Подъемная сила крыла создается за счет разницы давлений воздуха на нижнюю и верхнюю поверхность. Давление же воздуха зависит от скорости протекания воздуха. На нижней поверхности крыла скорость протекания воздуха оказывается ниже, чем на верхней, поэтому подъемная сила крыла направлена снизу вверх.

Одним из популярных объяснений принципа действия крыла является ударная модель Ньютона: частицы воздуха, сталкиваясь с нижней поверхностью крыла, стоящего под углом к потоку, упруго отскакивают вниз («скос потока»), согласно третьему закону Ньютона толкая крыло вверх. Данная модель учитывает закон сохранения импульса, но полностью игнорирует обтекание верхней поверхности крыла, вследствие чего она даёт заниженную величину подъёмной силы.

В другой популярной модели возникновение подъёмной силы объясняется разностью давлений на верхней и нижней сторонах профиля, возникающей согласно закону Бернулли . Обычно рассматривается крыло с плоско-выпуклым профилем : нижняя поверхность плоская, верхняя - выпуклая. Набегающий поток разделяется крылом на две части - верхнюю и нижнюю, - при этом вследствие выпуклости крыла верхняя часть потока должна пройти больший путь, нежели нижняя. Для обеспечения неразрывности потока скорость воздуха над крылом должна быть больше, чем под ним, из чего следует, что давление на верхней стороне профиля крыла ниже, чем на нижней; этой разностью давлений обуславливается подъёмная сила. Однако данная модель не объясняет возникновение подъёмной силы на двояковыпуклых симметричных или на вогнуто-выпуклых профилях, когда потоки сверху и снизу проходят одинаковое расстояние.

Для устранения этих недостатков Н. Е. Жуковский ввёл понятие циркуляции скорости потока ; в 1904 году им была сформулирована теорема Жуковского . Циркуляция скорости позволяет учесть скос потока и получать значительно более точные результаты при расчётах.

Также в приведённых объяснениях не раскрывается детальный механизм передачи энергии от крыла к потоку, то есть совершения работы самим крылом. Хотя верхняя часть воздушного потока действительно имеет повышенную скорость, геометрическая длина пути не имеет к этому отношения - это вызвано взаимодействием слоёв неподвижного и подвижного воздуха и верхней поверхности крыла. Поток воздуха, следующий вдоль верхней поверхности крыла, «прилипает» к ней и старается следовать вдоль этой поверхности даже после точки перегиба профиля - эффект Коанды . Благодаря поступательному движению крыло совершает работу по разгону этой части потока.

В реальности обтекание крыла является очень сложным трёхмерным нелинейным и зачастую нестационарным процессом. Подъёмная сила крыла зависит от его площади, профиля, формы в плане, а также от угла атаки , скорости и плотности потока, числа Маха и от целого ряда других факторов.

Форма крыла

Одна из основных проблем при конструировании новых самолётов - выбор оптимальной формы крыла и его параметров (геометрических, аэродинамических, прочностных и т. п.).

Прямое крыло

Крыло с наплывом (оживальное)

Вариация стреловидного крыла . Действия крыла оживальной формы можно описать как спиральный поток вихрей, срывающихся с острой передней кромки большой стреловидности в околофюзеляжной части крыла. Вихревая пленка вызывает также образование обширных областей низкого давления и увеличивает энергию пограничного слоя воздуха, увеличивая тем самым коэффициент подъёмной силы. Маневренность ограничивается прежде всего статической и динамической прочностью конструкционных материалов, а также аэродинамическими характеристиками самолёта.

Сверхкритическое крыло

Интересный пример модификации стреловидного крыла . Использование уплощённых профилей с изогнутой задней частью позволяет равномерно распределить давление вдоль хорды профиля и тем самым приводит к смещению центра давления назад, а также увеличивает критическое число Маха на 10-15 %.

Обратной стреловидности

Треугольное крыло

Трапециевидное крыло

Преимущества

Эллиптическое крыло

Преимущества

Эллиптическое крыло имеет наибольшее аэродинамическое качество среди всех известных типов крыла.

Толщина крыла

Крыло также характеризуется относительной толщиной (соотношение толщины к ширине), у корня и на концах, выраженной в процентах.

Толстое крыло

Толстое крыло позволяет отодвинуть момент срыва в штопор (сваливание), и лётчик может маневрировать с бо́льшими углами и перегрузкой. Главное - этот срыв на таком крыле развивается постепенно, сохраняя плавное обтекание потока на большей части крыла. При этом, лётчик получает возможность распознать опасность по возникающей тряске аэроплана и вовремя принять меры. Самолёт же с тонким крылом резко и внезапно теряет подъёмную силу почти на всей площади крыла, не оставляя пилоту шансов.

Механизация крыла

  • 2 - концевой элерон
  • 3 - корневой элерон
  • 4 - обтекатели механизма привода закрылков
  • 7 - корневой трехщелевой закрылок
  • 8 - внешний трехщелевой закрылок
  • 10 - интерцептор/спойлер


Складывающееся крыло

Конструктивно-силовые схемы крыла

По конструктивно-силовой схеме крылья делятся на ферменные, лонжеронные, кессонные.

Ферменное крыло

Конструкция такого крыла включает пространственную ферму, воспринимающую силовые факторы, нервюры и обшивку, передающую аэродинамическую нагрузку на нервюры. Не следует путать ферменную конструктивно-силовую схему крыла с лонжеронной конструкцией, включающей лонжероны и (или) нервюры ферменной конструкции. В настоящее время крылья ферменной конструкции практически не применяются.

Лонжеронное крыло

Лонжеронное крыло включает один или несколько продольных силовых элементов - лонжеронов , которые воспринимают изгибающий момент . Помимо лонжеронов, в таком крыле могут присутствовать продольные стенки. Они отличаются от лонжеронов почти полным отсутствием поясов. Остальные силовые элементы (нервюры , панели обшивки с стрингерным набором) крепятся к лонжеронам. Лонжероны передают нагрузку на шпангоуты фюзеляжа самолета с помощью моментных узлов.

Кессонное крыло

Кессонное крыло воспринимает все основные силовые факторы с помощью кессона, включающего лонжероны и силовые панели обшивки. В пределе лонжероны вырождаются до стенок, а изгибающий момент полностью воспринимается панелями обшивки. В таком случае конструкцию называют моноблочной . Силовые панели включают обшивку и подкрепляющий набор в виде стрингеров или гофра. Подкрепляющий набор служит для обеспечения отсутствия потери устойчивости обшивки от сжатия и работает на растяжение-сжатие вместе с обшивкой. Кессонная конструкция крыла требует наличия центроплана , к которому крепятся консоли крыла. Консоли крыла стыкуются с центропланом при помощи контурного стыка, обеспечивающего передачу силовых факторов по всей ширине панели.

История исследования

Первые теоретические исследования и важные результаты были проведены на рубеже XIX-XX веков русскими учёными Н. Жуковским , С. Чаплыгиным и немецким М. Куттой .

Среди полученных ими результатов можно отметить.